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Reflection and Refraction of Micropolar
Magneto-thermoviscoelastic Waves at the Interface
between Two Micropolar Viscoelastic Media
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Using micropolar generalized thermoviscoelastic theories, problems of reflec-
tion and refraction of magneto-thermoeviscoelastic waves at the interface
between two viscoelastic media are studied when a uniform magnetic field
permeates the media. Coefficient ratios of reflection and refraction are
obtained using continuous boundary conditions. Some special cases are con-
sidered, i.e., the absence of micropolar and viscous effects. By numerical
calculations, variations of the amplitude ratios of reflection and refraction
coefficients with the angle of incidence are shown graphically for incident
rotational and dilatational waves at the interface between two media (one
medium is aluminium-epoxy micropolar viscoelastic material, and the other
is magnesium crystal micropolar viscoelastic material). Comparing the gen-
eralized thermoelastic theories developed by Lord and Shulman (LS) and by
Green and Lindsay (GL) in this paper to conventional dynamics (CD) theory
the effects of a magnetic field and viscosity are shown numerically in this
paper.

KEY WORDS: generalized thermoelastic theory; magneto-thermoviscoelastic
waves; reflection and refraction; relaxation times.

1. INTRODUCTION

The heat conduction equations for classical uncoupled and coupled theo-
ries of thermoelasticity (here called conventional dynamics, or CD, theory)

1 School of Aerospace, Department of Engineering Mechanics, MOE Key Laboratory for
Strength and Vibration, Xi’an Jiaotong University, Xi’an 710049, P. R. China.

2 To whom correspondence should be addressed. E-mail: yqsong@mail.xjtu.edu.cn
3 School of Architecture Engineering, Henan University of Science and Technology,

Luoyang 471003, P. R. China.

970

0195-928X/06/0500-0970/0 © 2006 Springer Science+Business Media, Inc.



Reflection and Refraction of Micropolar Magneto-thermoviscoelastic Waves at Interface 971

are of the diffusion type, and predict an infinite speed of propagation of
the heat wave, which is physically inadmissible. To eliminate this para-
dox of the classical approach, theories of generalized thermoelasticity were
developed. At present, there are various generalized approaches, but the
theories proposed by Lord and Shulman [1] and Green and Lindsay [2]
(here called LS and GL theories, respectively) are most popular. These the-
ories have been developed by introducing one or two relaxation times in
the thermoelastic process, with an aim to eliminate the paradox of an infi-
nite speed for the propagation of thermal signals. The LS model is based
on a modified Fourier’s law, but the GL model even allows second sound
without violating the classical Fourier’s law. The two theories are struc-
turally different, and one cannot be obtained as a particular case of the
other. Various problems characterizing these two theories have been inves-
tigated and have revealed some interesting phenomena. Chandrasekhara-
iah [3,4] has reported brief reviews of this topic.

The linear micropolar theory has been developed by Eringen [5]. It is
used to describe polymers and materials possessing microstructures. Met-
als, polymers, composites, soils, rocks, and concretes are typical media with
microstructures. The difference between a micropolar theory and classical
theory is the introduction of an independent microrotation vector. Thus,
the rotation of the continuum includes macrorotation and microrotation.
Also, there exists not only a traditional stress tensor but also a coupled
stress tensor. And the stress tensor can be asymmetrical when the rotation
of a microvolume is in equilibrium. In recent years, the study of micropolar
theory has become more important due to the large-scale exploitation and
application of composites, polymers, and large-grain materials. At the pres-
ent time, many studies have been reported for the micropolar theory under
generalized thermoelastic and thermoviscoelasticity theories [6–13].

The problem of the reflection and refraction of plane waves at a plane
interface in a micropolar medium has been discussed by many authors,
e.g., Parfitt and Eringen [14], Ariman [15], etc. Recently, Singh and Kumar
[16,17] investigated the reflection and refraction of an interface wave between
a viscoelastic solid and a micropolar elastic solid. Kumar [18] studied wave
propagation in a micropolar viscoelastic generalized thermoelastic solid.
Kumar and Deswal [19] studied the propagation of a surface wave in
micropolar thermoelastic materials under thermoelasticity without energy
dissipation. But few papers have been concerned with problems of wave
propagation at the interface between two micropolar viscoelastic media
under a permeating magnetic field in generalized thermoviscoelastic theory.

In this paper we studied reflection and refraction of such interfaces
in a magnetic field within the framework of generalized thermovisco-
elasticity. Equations for the reflection and refraction coefficient ratios of
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dilatational and rotational waves are given using continuity boundary con-
ditions at the interface. Two special cases, (a) absence of micropolar effect
and (b) absence of viscous effect, are considered. Variations of the ampli-
tude ratios of the reflection and refraction coefficients with the angle of
incidence for aluminum-epoxy and magnesium crystal micropolar visco-
elastic materials are presented based on numerical calculations. Also, com-
parisons among CD, LS, and GL theories, and the effects of viscous and
magnetic fields are shown graphically.

2. FORMULATION OF PROBLEM

Consider isotropic, homogeneous, linear, thermally and electrically
conducting micropolar viscoelastic media, M1 and M2, occupying the
semi-infinite Cartesian space: �1 = {(x, y, z) |−∞<x,y <∞,−∞<z≤0 }
and �2 ={(x, y, z) |−∞<x,y <∞,0<z≤∞}, respectively. The whole body
is at a constant temperature T0, and it is acted on throughout by a con-
stant magnetic field �H = (0,H0,0), which is oriented towards the positive
direction of the y-axis. Assume the components of the displacement and
microrotation are �u = (u,0,w) and �ω= (0,ω2,0).

The governing equations of the problem follow.
(a) Equation of motion (in the absence of body force and heat

source):

ρ
..
ui =σij,j + �Fi, (1)

∈ijp σjp +mji,j = Jρ
∂2ωi

∂t2
, (2)

where the Lorentz force is given by

�F =µ0

(
�J × �H

)
; (3)

∈ijp is the alternating tensor and defined as

∈ijp=ni ·
(
nj ×np

)
. (4)

The variations of the magnetic and electric fields are given by Maxwell
equations:

Curl �H = �J + ε0

.

�E, (5)

curl �E =−µ0

.

�h, (6)
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�E =−µ0

( .
�u × �H

)
, (7)

div �h =0, (8)

And the current density �J is obtained by Ohm’s law,

�J =σ0

(
�E + ∂�u

∂t
× �B

)
. (9)

The components of the initial magnetic field can be written as

Hx =Hz =0, Hy =µ0H0 =B0. (10)

The components of the Lorentz force are given by

Fx =−σ0B2
0
∂u
∂t
, Fy =0, Fz =−σ0B2

0
∂w
∂t
. (11)

(b) Constitutive equation
Assuming that the relaxation effects of the volumetric properties of the
material are ignored, one can write for the generalized theory of thermo-
viscoelasticity,

σij = �

R
(
eij
)+


Ke−

�

R (e)
3


 δij +k

(
uj,i − εijpωp

)

−(3λ+2µ+k)αt

(
1+ τ1

∂

∂t

)
Tδij. (12)

where
∫ t

0
R(t− τ)∂εij(�x, τ )

∂τ
dτ = �

R(εij), e= eii, eij =
1
2

(
ui,j +uj,i

)
,

ωij =
1
2

(
ωi,j +ωj,i

)
, K=λ+ 2

3
µ.

(13)

δij is the Kronecker delta, defined as δij = ni · nj. The elastic case can be
obtained when
�

R
(
εij
)=2µ

(
εij
)
.

R (t) is a relaxation function given by [20]

R (t)=2µ
[

1−A
∫ t

0
e−βttα

′−1dt
]
, (14)
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where
(
0<α′<1,A>0, β >0

)
are experimental parameters.

The relation between the coupled stress and rotation tensor is given below:

mij =αωiiδij +βωi,j +γωj,i (15)

(c) Generalized heat conduction equation

k′∇2T= ρCE

(
∂

∂t
+ τ0

∂2

∂t2

)
T

+ (3λ+2µ+k) αtT0

(
∂

∂t
+nτ0

∂2

∂t2

)
ekk, (16)

The use of relaxation times τ0, τ1 and dimensionless constant n makes the
above equations possible for the three different theories:

CD theory : τ0 = τ1 =0
LS theory : τ0>0, τ1 =0, n=1
GL theory : τ1� τ0 �0, n=0

Using Eq. (1), (2), (11), and (12), we obtain the following equations of
motion:


K+

�

R
6


 ∂2w
∂x∂z

+

K+k+ 2

�

R
3


 ∂2u
∂x2

+

k+

�

R
2


 ∂2u
∂z2

−k
∂ω2

∂z

−(3λ+2µ+k)αt

(
1+ τ1

∂

∂t

)
T,x +µ0(�J × �H)x =ρ ..u, (17)


K+

�

R
6


 ∂2u
∂x∂z

+

K+k+ 2

�

R
3


 ∂2w
∂z2

+

k+

�

R
2


 ∂2w
∂x2

+k
∂ω2

∂x

−(3λ+2µ+k)αt

(
1+ τ1

∂

∂t

)
T,z +µ0(�J × �H)z =ρ ..

w, (18)

(α+β)ωk,ki +γωi,kk −kεijkuj,k −2kωi =ρJ
..
ωi. (19)

To obtain a solution of the problem, the following displacement potentials
φ and �ψ = (0,ψ,0) and microrotation potentials ξ and �ζ = (ζ1,0, ζ3) are
introduced using the following relations:
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�u=∇φ+∇ × �ψ, ∇ · �ψ=0,
�ω2 =∇ξ +∇ × �ζ , ∇ · �ζ =0

. (20)

From Eqs. (16)–(20), we get

k′∇2T= ρCE

(
∂

∂t
+τ0

∂2

∂t2

)
T

+ (3λ+2µ+k) αtT0

(
∂

∂t
+nτ0

∂2

∂t2

)
∇2φ, (21)

α1
∂2φ

∂t2
=

K+k

ρ
+KRH

ρ
+2

�

R
3ρ


∇2φ

− (3λ+2µ+k)αt

ρ

(
1+ τ1

∂

∂t

)
T, (22)

α1
∂2 �ψ
∂t2

=
�

R
2ρ

∇2 �ψ+ k
ρ

∇ × �ζ , (23)

∂2�ζ
∂t2

= γ

ρJ
∇2�ζ −2ω2

0
�ζ +ω2

0∇ × �ψ, (24)

∂2ξ

∂t2
= γ

ρJ
∇2ξ −2ω2

0ξ. (25)

where

α1 =1+ C2
A

c2
, c2 = 1

ε0µ0
, C2

A = µ0H2
0

ρ
,

CT =
√

K
ρ
, RH = C2

A

C2
T

, ω2
0 = k

ρJ
, ∇2 = ∂2

∂x2
+ ∂2

∂z2
.

(26)

From Eqs (21)–(25), we notice that while the dilatational displacement
wave is affected due to the presence of the thermal and magnetic effects,
the dilatational wave, the coupled rotational displacement wave, and the
microrotational waves remain unaffected.
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Expressions for the stress components are

σzz=

K−

�

R
3


∇2φ+

(
k + �

R
)(

∂2φ

∂z2
− ∂2ψ

∂x∂z

)
−γ1

(
1+ τ1

∂

∂t

)
T, (27)

σxz =
(

k + �

R
)
∂2φ

∂x∂z
+

k +

�

R
2


 ∂2ψ

∂x2
−

�

R
2
∂2ψ

∂z2
+kω2, (28)

σzx =
(

k + �

R
)
∂2φ

∂x∂z
−

k +

�

R
2


 ∂2ψ

∂z2
+

�

R
2
∂2ψ

∂x2
−kω2, (29)

σxx=

K−

�

R
3


∇2φ+

(
k + �

R
)(

∂2φ

∂x2
+ ∂2ψ

∂x∂z

)
−γ1

(
1+ τ1

∂

∂t

)
T, (30)

mzy =γ ∂ω2

∂z
(31)

where

γ1 = (3λ+2µ+k) αt.

3. REFLECTION AND REFRACTION OF WAVES

Assuming the motion is harmonic, we give solutions of the problem
in the following form:

{φ,ψ,T,ω2}={φ1,ψ1,T1,ω21} exp(−iωt), (32)

Substituting the above expression into Eqs (21)–(24), we get

(
∇4 +N1∇2 +N2

)
φ1 =0 (33)

(
∇4 +N3∇2 +N4

)
ψ1 =0 (34)

in which

R=−2µ
iω

[
1− A�

(
α′)

(β− iω)α
′

]
,

N1 = k′α1ω
2 − ξ1ξ3 − ξ2ξ4

k′ξ1
,
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N2 =−α1ω
2ξ3

k′ξ1
,

N3 =
(

iωR+2k
)
ρJ
(
ω2 −2ω2

0

)+2ρkJω2
0 +2α1ρω

2γ
(

iωR+2k
)
γ

, (35)

N4 = 2α1ρ
2Jω2

(
ω2 −2ω2

0

)
(

iωR+2k
)
γ

, ξ1 = K +k +µ0H2
0 −2iωR/3

ρ
, ξ2 = γ1τ̄1

ρ
,

ξ3 =−iωρCEτ̄0, ξ4 =−iωγ1T0τ̄n, τ̄0,1 =1− iωτ0,1, τ̄n =1− inωτ0,

We can see from Eqs (33) and (34) that there exist four waves propagating
with different velocities at the interface between two semi-infinite micropo-
lar viscoelastic media; two of them are dilatational waves, and the other
two are rotational waves. The velocities of the rotational waves are

v2
1,2 =

ω2
(

N1 ±
√

N2
1 −4N2

)

2N2
; (36)

the velocities of the dilatational waves are

v2
3,4 =

ω2
(

N3 ±
√

N2
3 −4N4

)

2N4
(37)

From the above we can see there are four reflected waves and four
refracted waves (two of them are dilatational waves, the other two are
rotational waves) when waves from inside of one medium arrive at the
interface of the two media where z=0. Assume that the propagating direc-
tion of the incident wave make an angle θ with the positive direction of
the z-axis. The propagating directions of the reflected and refracted waves
make angles θ1, θ2, θ3, θ4 and θ∗

1 , θ
∗
2 , θ

∗
3 , θ

∗
4 with the positive direction of

the z-axis, respectively (Fig. 1).
(a) For incident rotational waves, the displacement potentials, φ and

ψ , have the following forms:

φ=
2∑

i=1

Ei exp
{
iki(cos θix+ sin θiz)− iωit

}
(38)
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Fig. 1. Reflection and refraction of plane waves at the interface
between two micropolar viscoelastic media.

ψ = F1 exp
{
ik0(cos θ0x− sin θ0z)− iω0t

}

+
4∑

i=3

Fi exp
{
iki(cos θix+ sin θiz)− iωit

}
(39)

T=
2∑

i=1

βiEi exp
{
iki(cos θix+ sin θiz)− iωit

}
(40)

ω2 = β3F1 exp
{
ik0(cos θ0x− sin θ0z)− iω0t

}

+
4∑

i=3

βiFi exp
{
iki(cos θix+ sin θiz)− iωit

}
(41)

where E1,E2,F1,F3,F4, β1, β2, β3, β4 are complex constants, and

βj =
α1ω

2
j − ξ1k2

j

ξ2
, (j=1,2)

βj =−
2α1ρω

2
j +

(
−iωjR+2k

)
k2

j

2k
, (j=3,4),

(42)
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(b) For incident dilatational waves, the displacement potentials, φ and ψ ,
have the following forms:

φ = F1 exp
{
ik0(cos θ0x− sin θ0z)− iω0t

}

+
2∑

i=1

Ei exp
{
iki(cos θix+ sin θiz)− iωit

}
(43)

ψ=
4∑

i=3

Fi exp{iki(cos θix+ sin θiz)− iωit} (44)

T = β1F1 exp
{
ik0(cos θ0x− sin θ0z)− iω0t

}

+
2∑

i=1

βiEi exp
{
iki(cos θix+ sin θiz)− iωit

}
(45)

ω2 =
4∑

i=3

βiFi exp
{
iki(cos θix+ sin θiz)− iωit

}
(46)

The potential functions of the refraction waves in both cases can be writ-
ten as

φ∗ =
2∑

i=1

E∗
i exp

{
ik∗

i (cos θ∗
i x− sin θ∗

i z)− iω∗
i t
}

(47)

ψ∗ =
4∑

i=3

F∗
i exp

{
ik∗

i (cos θ∗
i x− sin θ∗

i z)− iω∗
i t
}

(48)

T∗ =
2∑

i=1

β∗
i E∗

i exp
{
ik∗

i (cos θ∗
i x− sin θ∗

i z)− iω∗
i t
}

(49)

ω∗
2 =

4∑
i=3

β∗
i F∗

i exp
{
ik∗

i (cos θ∗
i x− sin θ∗

i z)− iω∗
i t
}

(50)

in which k∗
i , θ

∗
i ,ω

∗
i in Eqs (47)–(50) correspond with ki, θi,ωi in Eqs (38)–

(46), and β∗
i corresponds with βi in Eq. (42). Symbols with an asterisk

in Medium M2 denote the same meaning as those without asterisks in
Medium M1.
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4. BOUNDARY CONDITIONS

We consider the following continuity boundary conditions of stress,
displacement, and microrotation:

σzz =σ ∗
zz for z=0. (51)

σzx =σ ∗
zx for z=0. (52)

mzy =m∗
zy for z=0. (53)

u=u∗ for z=0. (54)

w=w∗ for z=0. (55)

ω2 =ω∗
2 for z=0. (56)

Also, the temperature and temperature gradient are continuous at the
interface:

T=T∗ for z=0. (57)

k′ ∂T
∂z

=k′∗ ∂T∗

∂z
for z=0. (58)

5. REFLECTION AND REFRACTION COEFFICIENT RATIOS

The potentials given in Eqs (38)–(41) and (43)–(50) satisfy the bound-
ary conditions, Eqs (51)–(58), at the interface z=0, if

ω1 = ω2 = ω3 = ω4 = ω∗
1 = ω∗

2 = ω∗
3 = ω∗

4 = ω (59)

and

k0 cos θ0 = k1 cos θ1 = k2 cos θ2 = k3 cos θ3 = k4 cos θ4 = k∗
1 cos θ∗

1

= k∗
2 cos θ∗

2 = k∗
3 cos θ∗

3 = k∗
4 cos θ∗

4

(60)
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From Eq. (60) we obtain

cos θ0

v0
=cos θ1

v1
= cos θ2

v2
=cos θ3

v3
= cos θ4

v4
=cos θ∗

1

v∗
1

= cos θ∗
2

v∗
2

=cos θ∗
3

v∗
3

= cos θ∗
4

v∗
4
(61)

where ωi =kivi,ω
∗
i =k∗

i v∗
i , (i=1,2,3,4).

For incident rotational waves,

θ3 = θ0, v0 =v3. (62)

For incident dilatational waves,

θ1 = θ0, v0 =v1. (63)

Using the boundary conditions, Eqs (51)–(58), we get a set of eight equa-
tions;

8∑
j=1

aijzj=bi, (i=1,2, . . . ,8) (64)

where

z1=E1

F1
, z2=E2

F1
, z3= F3

F1
, z4= F4

F1
, z5=E∗

1

F1
, z6=E∗

2

F1
,

z7=F∗
3

F1
, z8=F∗

4

F1
(65)

and

a11 =−
(
δ1k2

1 + δ3k2
1 sin2 θ1 +γ1τ̄1β1

)
,

a12 =−
(
δ1k2

2 + δ3k2
2 sin2 θ2 +γ1τ̄1β2

)
,

a13 = δ3k2
3 sin 2θ3/2, a14 = δ3k2

4 sin 2θ4/2,

a15 = δ∗1k∗2
1 + δ∗3k∗2

1 sin2 θ∗
1 +γ ∗

1 τ̄
∗
1 β

∗
1 , a16 = δ∗1k∗2

2 +δ∗3k∗2
2 sin2 θ∗

2 +γ ∗
1 τ̄

∗
1 β

∗
2 ,

a17 = δ∗3k∗2
3 sin 2θ∗

3 /2, a18 = δ∗3k∗2
4 sin 2θ∗

4 /2,
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a21 =−δ3k2
1 sin 2θ1/2, a22 =−δ3k2

2 sin 2θ2/2

a23 =−k2
3

(
δ5 sin2 θ3 − δ4 cos2 θ3

)
−kβ3,

a24 =−k2
4

(
δ5 sin2 θ4 − δ4 cos2 θ4

)
−kβ4,

a25 =−δ∗3k∗2
1 sin 2θ∗

1 /2, a26 =−δ∗3k∗2
2 sin 2θ∗

2 /2,

a27 =k∗2
3

(
δ∗5 sin2 θ∗

3 − δ∗4 cos2 θ∗
3

)
+k∗β∗

3 ,

a28 =k∗2
4

(
δ∗5 sin2 θ∗

4 − δ∗4 cos2 θ∗
4

)
+k∗β∗

4 ,

a31 =a32 =0, a33 =γβ3k3 sin θ3, a34 =γβ4k4 sin θ4, a35 =a36 =0

a37 =γ ∗β∗
3 k∗

3 sin θ∗
3 , a38 =γ ∗β∗

4 k∗
4 sin θ∗

4

a41 =k1 cos θ1, a42 =k2 cos θ2, a43 =−k3 sin θ3, a44 =−k4 sin θ4,

a45 =−k∗
1 cos θ∗

1 , a46 =−k∗
2 cos θ∗

2 , a47 =−k∗
3 sin θ∗

3 , a48 =−k∗
4 sin θ∗

4

a51 =k1 sin θ1, a52 =k2 sin θ2, a53 =k3 cos θ3, a54 =k4 cos θ4,

a55 =k∗
1 sin θ∗

1 , a56 =k∗
2 sin θ∗

2 , a57 =−k∗
3 cos θ∗

3 , a58 =−k∗
4 cos θ∗

4 ,

a61=a62=0, a63=β3, a64=β4, a65=a66=0, a67 =−β∗
3 , a68 =−β∗

4

a71=β1, a72=β2, a73=a74=0, a75=−β∗
1 , a76 =−β∗

2 , a77 =a78 =0

a81 =k′β1k1 sin θ1, a82 =k′β2k2 sin θ2, a83 =a84 =0,

a85 =k′∗β∗
1 k∗

1 sin θ∗
1 , a86 =k′∗β∗

2 k∗
2 sin θ∗

2 , a87 =a88 =0

For incident rotational waves:

b1 =a13, b2 =−a23, b3 =a33, b4 =a43, b5 =−a53, b6 =−a63, b7 =b8 =0

(66)

For incident dilatational waves:

b1=−a11, b2=a21, b3 =0, b4 =−a41, b5 =a51, b6 =0, b7 =−a71, b8 =a81,

(67)

where

δ1 =K+ iωR
3
, δ2 =K+k− 2iωR

3
, δ3 =k− iωR, δ4 =k− iωR

2
,

δ5 =− iωR
2
, δ∗1 =K∗ + iωR

∗

3
, δ∗2 =K∗ +k∗ − 2iωR

∗

3
,

δ∗3 =k∗ − iωR
∗
, δ∗4 =k∗ − iωR

∗

2
, δ∗5 =− iωR

∗

2

(68)
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6. SPECIAL CASES

6.1. Neglecting the Micropolar Effect

In this case k=α=β=γ =k∗ =α∗ =β∗ =γ ∗ =0, and there exists only
three reflected waves and three refracted waves. Two of the three waves are
dilatational waves, and the other one is a rotational wave. The equation
for the displacement potentials, φ and ψ , are given below:

(
∇4 +N1∇2 +N2

)
φ1 =0 (69)

(
∇2 +N3

)
ψ1 =0 (70)

in which

N1 = k′α1ω
2 − ξ1ξ3 − ξ2ξ4

k′ξ1
, N2 =−α1ω

2ξ3

k′ξ1
, N3 = 2α1ρω

iR
,

ξ1 = K+µ0H2
0 +2/3iωR

ρ
, γ1 = (3λ+2µ)αt,

(71)

The velocities of the rotational waves are given as

v2
1,2 =

ω2
(

N1 ±
√

N2
1 −4N2

)

2N2
; (72)

the velocity of the dilatational wave is

v2
3 = ω2

N3
(73)

6.2. Neglecting the Viscous Effect

Here the media M1 and M2 are micropolar and elastic. In this case
R=2µ and

N1 = k′α1ω
2 − ξ1ξ3 − ξ2ξ4

k′ξ1
, N2 =−α1ω

2ξ3

k′ξ1
, ξ1 = λ+2µ+k+µ0H2

0

ρ
,

N3 =
(
ρJω2 −2k

)
µ+γα1ρω

2 +k2

µγ
, N4 = α1ρω

2
(
ρJω2 −2k

)

µγ
,

βj =
α1ρω

2
j −µk2

j

k
, (j=3,4)

(74)
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The expressions for the velocities of the rotational and dilatational waves
are the same as Eqs (36) and (37). Also,

δ1 =λ, δ2 =λ+k+2µ, δ3 =k+2µ, δ4 =k+µ,
δ5 =µ, δ∗1 =λ∗, δ∗2 =λ∗ +k∗ +2µ∗,
δ∗3 =k∗ +2µ∗, δ∗4 =k∗ +µ∗, δ∗5 =µ∗.

(75)

7. NUMERICAL RESULTS

According to Refs 21 and 22, and assuming medium M1 is an alu-
minum-epoxy micropolar viscoelastic material, and medium M2 is a mag-
nesium crystal micropolar viscoelastic material, the parameters are given
below

For Medium M1 [21]:

λ = 7.59×1010 Pa,µ=1.89×1010 Pa, k=0.0149×1010 Pa,

ρ = 2.19 g · cm−3, J =0.0196 cm2,

k′ = 0.48 cal · cm−1 · s−1 ·◦ C−1,CE =0.206cal ·g−1 ·◦ C−1,

αt = 2.35×10−5◦
C−1, γ =2.68×109g · cm · s−2

τ0 = 3.13×10−12s, andτ1 =4.575×10−12s.

For Medium M2 [22]:

λ∗ = 9.4×1010 Pa ,µ∗ =4.0×1010 Pa , k∗ =1.0×1010 Pa ,

ρ∗ = 1.74 g · cm−3, J ∗ =0.2×10−15cm2,

k′∗ = 0.06 cal · cm−1 · s−1 ·◦ C−1,C∗
E =0.23 cal ·g−1 ·◦ C−1,

α∗
t = 7.4033×10−6◦

C−1, γ =7.79×10−5g · cm · s−2

τ ∗
0 = 1.565×10−11 s, and τ ∗

1 =2.2875×10−11s.

Suppose the initial temperature for the two media is T0 = 300 K and
ω2/ω2

0 = 10. Dimensionless parameters in the constitutive equations for
two viscoelastic materials are taken as [20] β = 0.005, A = 0.106, and
α′ =0.5.

Figures 2 and 3 give the variation of the reflection and refraction
coefficient ratios with the angle of incidence for the rotational and dila-
tational waves based on the three theories. We can see that in the case of
an incident rotational wave, the reflection and refraction coefficient ratios
|z1| = |z2| = |z4| = |z5| = |z6| = |z7| = |z8| = 0 and |z3| = 1 when θ = 00, and
|z1| = |z2| = |z5| = |z6| = 0 when θ = 900. Also, we can observe that there
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Fig. 2. Variation of reflection and refraction coefficient ratios with incident angle of
rotational wave under various theories.
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Fig. 3. Variation of reflection and refraction coefficient ratios with incident angle of
rotational wave under various theories.
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Fig. 4. Viscous effect on variation of reflection and refraction coefficient ratios with incident
angle of rotational wave.
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Fig. 5. Viscous effect on variation of reflection and refraction coefficient ratios with incident
angle of dilatational wave.
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Fig. 6. Effect of magnetic field on variation of reflection and refraction coefficient ratios
with incident angle of rotational wave.
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Fig. 7. Effect of magnetic field on variation of reflection and refraction coefficient ratios
with incident angle of dilatational wave.
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are significant differences under generalized theories and conventional the-
ory for

∣∣zi
∣∣ , (i = 1,2,5,6). The differences are very small under CD, GL,

and LS theories for
∣∣zi
∣∣ , (i = 3,4,7,8). For the case of an incident dila-

tational wave, the reflection and refraction coefficient ratios |z2| = |z3| =
|z4|=|z5|=|z6|=|z7|=|z8|=0 and |z1|=1 when θ=00, and |z3|=|z4| =
|z7|= |z8|=0 when θ=900. We also can see there is an obvious difference
under generalized and conventional theories for

∣∣zi
∣∣ , (i = 1,2, . . . .8), and

the difference is very small under GL and LS theories. Figures 4 and 5
show the viscous effect under LS and GL theories for two different cases.
It can be observed that the viscous effect plays an important role. For
many materials the viscous effects have been neglected to simplify calcula-
tions. However, from computational results in this paper, we can see that
we will obtain incorrect conclusions if we neglect the viscous effects. Fig-
ures 6 and 7 show the variation of the angle of incidence with the reflec-
tion coefficient ratios for different values of the magnetic field under the
GL theory. Clearly the magnetic field has a salient influence on the reflec-
tion and refraction coefficient ratios. Thus, the magnetic field can be used
to change the angle and values of the reflected and refracted waves.

8. CONCLUSIONS

We obtain the following conclusions according to the above analysis:

1. The reflection and refraction coefficient ratios depend on the
angle of incidence, and the nature of this dependence is different
for different reflected waves.

2. The viscous effects play a significant role.

3. The magnetic field has a salient influence on the reflection and
refraction coefficient ratios.
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NOMENCLATURE
λ,µ, k,α,β, γ module of the medium
CE specific heat at constant strain
T absolute temperature
σij components of stress tensor
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ρ density
t time
T0 reference temperature
εij components of strain tensor
mij couple stress
ui components of displacement

vector
µ0 magnetic permeability
τ0, τ1 relaxation time
e dilatation
γ (3λ+2µ+k) αt
�H initial uniform magnetic intensity

vector
�h induced magnetic field vector

vector
�J current density vector

bulk modulus
ε coupling parameter
A, β, α′ empirical constants
ωi components of microrotation

vector
k′ thermal conductivity
ε0 dielectric constant
J micro inertia moment
αt coefficient of linear thermal

expansion
φ,ψ displacement potential
�E induced electric field vector
�u displacement
K λ+ (2/3)µ
R (t) relaxation function
n dimensionless constant
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